First passage time distribution in stochastic processes with moving and static absorbing boundaries with application to biological rupture experiments.
نویسندگان
چکیده
We develop and investigate an integral equation connecting the first passage time distribution of a stochastic process in the presence of an absorbing boundary condition and the corresponding Green's function in the absence of the absorbing boundary. Analytical solutions to the integral equations are obtained for three diffusion processes in time-independent potentials which have been previously investigated by other methods. The integral equation provides an alternative way to analytically solve the three diffusion-controlled reactive processes. In order to help analyze biological rupture experiments, we further investigate the numerical solutions of the integral equation for a diffusion process in a time-dependent potential. Our numerical procedure, based on the exact integral equation, avoids the adiabatic approximation used in previous analytical theories and is useful for fitting the rupture force distribution data from single-molecule pulling experiments or molecular dynamics simulation data, especially at larger pulling speeds, larger cantilever spring constants, and smaller reaction rates. Stochastic simulation results confirm the validity of our numerical procedure. We suggest combining a previous analytical theory with our integral equation approach to analyze the kinetics of force induced rupture of biomacromolecules.
منابع مشابه
Linear and Nonlinear Boundary Crossing Probabilities for Brownian Motion and Related Processes
Wepropose a newmethod to obtain the boundary crossing probabilities or the first passage time distribution for linear and nonlinear boundaries for Brownian motion. The method also covers certain classes of stochastic processes associated with Brownian motion. The basic idea of the method is based on being able to construct a finite Markov chain, and the boundary crossing probability of Brownian...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملDesign and Development of Mathematical Model for Static Mixer
A numerical model for simulating Residence Time Distribution (RTD) of turbulent flows in helical static mixers is proposed and developed to improve the understanding of static mixers. The results of this model is presented in terms of different volumetric flow rate to illustrate the complicated flow patterns that drive the mixing process i...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملArrival probability in the stochastic networks with an established discrete time Markov chain
The probable lack of some arcs and nodes in the stochastic networks is considered in this paper, and its effect is shown as the arrival probability from a given source node to a given sink node. A discrete time Markov chain with an absorbing state is established in a directed acyclic network. Then, the probability of transition from the initial state to the absorbing state is computed. It is as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 133 3 شماره
صفحات -
تاریخ انتشار 2010